Software Testing, Verification and Reliability

| RESEARCH ARTICLE CEIEED

'.) Check for updates

WILEY

Ensuring Syntactic Interoperability Using
Consumer-Driven Contract Testing

Georg-Daniel Schwarz | Felix Quast | Dirk Riehle

Friedrich-Alexander-Universitit Erlangen-Niirnberg, Erlangen, Germany

Correspondence: Georg-Daniel Schwarz (georg.schwarz@fau.de)

Received: 23 December 2023 | Revised: 9 May 2025 | Accepted: 30 May 2025

Funding: This work was supported by BMBF (Federal Ministry of Education and Research) Software Campus 2.0 project (011S17045) and by DFG (German

Research Foundation) Research Grants Programme (RI 2147/9-1).

Keywords: action research | consumer-driven contract testing | guidelines | literature review | microservices | testing

ABSTRACT

Integrating services in service-based architectures is a major concern and challenge to their developers. A key problem is that

today's compilers cannot ensure syntactic interoperability of web APIs. Without further help, invalid calls surface only at runt-

ime. Microservice-based architectures exacerbate this problem due to their use of polyglot software stacks and independent

deployments. As a result, maintaining API compatibility with consumers has become increasingly complex. This study presents

a systematic literature review on consumer-driven contract testing, a testing technique that ensures syntactic compatibility be-

tween microservices through isolated test execution. We develop a theory on when and how to use consumer-driven contract
testing to address the problem of syntactic interoperability. We build out our theory with the insights of an action research study,
contributing rare empirical data to the field. Our theory posits that consumer-driven contract testing can ensure syntactic inter-
operability between microservices and complement the testing strategy of such systems. The action research study confirmed

this and revealed that introducing consumer-driven contract testing can promote the design and development of higher-quality

APIs and code.

1 | Introduction

Microservices are a popular architectural style for building scal-
able and robust software systems in the cloud. Unlike monolithic
applications, which consist of a single coherent entity, microser-
vices split functionality into multiple independent services [1].
Mature microservice-based architectures facilitate independent
deployment of each microservice, allowing for independent de-
velopment life cycles with teams working in parallel [2].

However, the distributed nature of microservices gives rise to
unique challenges, like the reliance on communication over an
unreliable network instead of in-process communication. By

shifting complexity into the integration layer, integration be-
comes a more predominant and explicit challenge [3].

While monolithic architectures have compilers to prevent syn-
tactic incompatibilities, no equivalent mechanisms exist for in-
tegrating microservices.

Traditional testing techniques fall short of fully discovering
breaking changes and preventing incompatibilities from reach-
ing production. On the one hand, testing the compatibility of
microservices in isolation requires tests on both sides to test
against the same interface specification. Classical unit testing
would need tests to be manually adapted on both sides to keep

Felix Quast and Dirk Riehle contributed equally.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2025 The Author(s). Software Testing, Verification and Reliability published by John Wiley & Sons Ltd.

Software Testing, Verification and Reliability, 2025; 35:¢70006
https://doi.org/10.1002/stvr.70006

1of 16

https://doi.org/10.1002/stvr.70006
https://doi.org/10.1002/stvr.70006
https://orcid.org/0000-0001-9060-7938
mailto:
https://orcid.org/0000-0002-8139-5600
mailto:georg.schwarz@fau.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.70006&domain=pdf&date_stamp=2025-06-19

them in sync, introducing coupling between the microservices.
However, microservices emphasize independence in develop-
ment through loose coupling [4], making this testing approach
unsuitable for microservices. On the other hand, integration
and system testing can detect syntactic incompatibilities as they
require multiple services to interact with each other. However,
using these higher-level tests is more expensive and slower re-
garding feedback time in continuous integration pipelines [5].

In this article, we build a theory of consumer-driven contract
testing (CDCT). A theory consists of abstract knowledge to ex-
plain a phenomenon or predict outcomes and is primarily a set
of (typically interrelated) hypotheses rooted in data. This article
presents such a theory in the format of guidelines on when and
how to use CDCT in microservice-based projects, a testing tech-
nique used to ensure syntactic compatibility between microser-
vices with isolated test execution.

Instead of testing both sides against the same specification,
CDCT divides the test into two isolated phases (see Figure 1).
The consumer test produces the compatibility specification, en-
coding the consumer's expectations towards the API codified as
a contract file. The provider test uses this contract file to replay
the interactions against the API provider and test the compati-
bility with the consumer's expectations [6].

In this manner, consumers drive the changes in the API con-
tracts between the consumer (the client) and the provider (the
service). By aggregating the consumers’ expectations towards
the API, the provider can implement changes to satisfy these
consumer expectations and ensure that changes don't violate
them. By decoupling the consumer and provider via the contract
file, the CDC tests don't require running the consumer and the
provider simultaneously. CDCT poses an alternative to integra-
tion testing to discover incompatibilities between microservices
[6]. Popular tools to facilitate CDCT are Pact (https://github.
com/pact-foundation) and Spring Cloud Contracts (https://
github.com/spring-cloud/spring-cloud-contract) [7].

While CDCT is increasingly being adopted by practitioners, es-
pecially in the microservice domain, there are only few empir-
ical studies on the matter. This study aims to summarize the
current knowledge body and provide further empirical insights
into CDCT:

1. We present a systematic literature review on consumer-
driven contract testing, giving an overview of the field.

7 .
7 Consumer F’f_?VIder .
d Test . est
/ R .
‘ L
Consumer \ i Provider
\ ,
AN i, P
> 7~

~
~ -

FIGURE1 | Consumer-driven contract testing (derived from Lehvi
et al. [6]).

2. We contribute an action research study to the body of
CDCT knowledge, addressing its current sparsity in em-
pirical data.

3. Based on the literature and the action research study, we
establish a theory on when to utilize consumer-driven con-
tract testing over other mechanisms to ensure syntactic
compatibility.

4. Additionally, we develop guidelines on how to implement
consumer-driven contract testing.

The remainder of this article is structured as follows: Section 2
positions the article in the related work. Section 3 outlines the
applied research design. Section 4 presents the results of the sys-
tematic literature review and the action research study. Section 5
discusses the results and outlines future work. Section 6 reflects
on the limitations of the applied research methods, and Section 7
concludes the article.

2 | Related Work

In 2006, Robinson [8] published a foundational article on the
underlying idea of consumer-driven contracts. Dedicated CDCT
tools were introduced several years later, exemplified by the
creation of Pact in 2013 or the predecessor of Spring Cloud
Contracts called Accurest in 2015. With the rise of the micros-
ervice architectural style, the topic was picked up again as inte-
gration between microservices is an inherent challenge for these
systems. Tools like Pact and Spring Cloud Contracts formed the
current understanding of how Robinson's idea can be imple-
mented. Practitioners picked up on the topic, leading to a stream
of articles on the topic of CDCT, like the one of Microsoft [9].
Next to the tools' documentation, such articles build the entry
door for practitioners to learn and implement CDC tests.

However, the trend has yet to make its way into academia as
there are only few articles examining the phenomenon. Contrary
to practitioner articles which aim to be actionable and usable,
academic studies capture knowledge about a phenomenon with
the ambition of avoiding biases, for example, by comparing dif-
ferent views on the topic. Thus, we see merit in aggregating the
body of academic knowledge and presenting a cohesive picture
of the topic.

We did not find a systematic review that devotes itself to
consumer-driven contract testing in detail. While broader sys-
tematic literature reviews have addressed related topics, they
have not extensively explored the testing technique itself. For
example, Ghani et al. [10] systematically reviewed microservice
testing approaches and briefly mentioned contract testing as a
broader concept without providing detailed insights. Similarly,
Waseem et al. [11] mapped the microservice testing literature
and briefly discussed contract testing without delving into its
specifics. Bogner et al. [12] conducted expert interviews and
reviewed grey literature on the evolvability assurance of mi-
croservices, where they showcased the relevance of CDCT by
presenting it as an evolvability pattern.

Our study extends these higher-level reviews by focusing spe-
cifically on the testing technique of consumer-driven contract

20f 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://github.com/pact-foundation
https://github.com/pact-foundation
https://github.com/spring-cloud/spring-cloud-contract
https://github.com/spring-cloud/spring-cloud-contract

testing. By delving into the intricacies of CDCT, we aim to con-
tribute a comprehensive understanding of this specific testing
approach.

In addition, the amount of empirical studies on the topic is
limited. Ayas et al. [13] performed a post-mortem qualitative
analysis of software repositories, shedding light on testing ar-
chitectures of open-source microservice projects that employed
CDCT. Koschel et al. [14] presented CDCT within the context of
a comprehensive testing strategy in an example system. Lehvd
et al. [6] conducted a case study on consumer-driven contract
testing and how it complements an existing testing setup in a
microservice-based system.

The action research part of this article takes the same line as
the mentioned articles, contributing rare empirical data to the
field. However, our study differs by integrating relevant lit-
erature to build a scientific theory alongside describing our
findings.

3 | Research Design

To build a theory of consumer-driven contract testing, we con-
ducted a systematic literature review (SLR) to answer the fol-
lowing research questions:

RQ1: When to apply consumer-driven contract testing?

RQ2: How to apply consumer-driven contract testing?

The SLR allowed us to gather relevant information from exist-
ing studies and identify gaps in the current understanding of
the subject. After establishing the theoretical foundation, we
applied the initial theory to a software project using partici-
patory action research. This approach allowed us to build out
the theory by obtaining real-world insights and feedback. The
following subsections provide a detailed explanation of the two
methods involved in this research design.

3.1 | Systematic Literature Review

We followed the guidelines of Kitchenham [15] to plan and exe-
cute our systematic literature review. Figure 2 depicts an over-
view of the SLR process. The remainder of this section details
the search and selection process. The replication package [16]
contains the literature search and selection step results.

3.1.1 | Search Strategy

We employed a search strategy on multiple electronic databases,
including Google Scholar, IEEE Xplore, ACM Digital Library,
and Scopus to gather scientific articles for our review.

We refined our search strategy through exploratory literature
searches. Ultimately, we performed three parallel searches
on each data source using the following logical queries (S) in
May 2023:

S1:‘consumer-driven contract testing’
S2:‘consumer-driven contract test’

S3:‘cdct’ AND ‘microservice’

We compiled the search results from each data source and con-
solidated them into a common list. Throughout this process, we
removed duplicate articles, resulting in a pool of 68 potentially
relevant articles.

3.1.2 | Study Selection

To select the relevant literature for our review, we established
specific inclusion criteria (IC):

IC1: The article must be peer-reviewed academic literature
published at a journal, conference, or workshop.

IC2: The article must be accessible in full text to the authors.
IC3: The article must be available in English.

IC4: The article must speak about the advantages, disad-
vantages, or guidelines of consumer-driven contract
testing, or report about experiences with consumer-
driven contract testing

We considered only those articles that met all of the inclusion
criteria, resulting in a literature pool of ten relevant articles for
further analysis. Figure 2 details how each inclusion criteria
narrowed down to the final literature pool.

In addition, we conducted one iteration of forward snowballing
(by using Google Scholar's ‘Cited By’ feature) and one iteration of
backward snowballing (by looking into the references of the se-
lected articles) to discover literature that may have been missed
[17]. We considered articles with relevant titles by applying the

Google [~] 67 articles : i g ‘ P
Scholar | P z L L
- | e | | 5] =
— i , 5 : P Y i P P
ACM laticle |:g: | $ g | 2e|igi| S |8 2 g | B |lig | & g | &
DL IR EEINEE A gl 2 L2l 3 gL
— E = HEMZEHES § HE- 5 FE E§ —E~ € mE> S
_— i : ' =] ' = i ! <} N s}) [2 o ! o — ©
IEEE 2articles | 113 | g S| & | 5 |iS 0 |i& S | 2] & = 3
Xplore | z A s e | B R N ' f
——15 articles
Scopus
FIGURE2 | Systematic literature review - process overview.
30f16

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

eligibility criteria to the potentially relevant articles identified
through snowballing. We included one additional article in the
literature pool.

3.1.3 | Study Quality Assessment

Considering the limited number of articles in our literature pool,
we did not conduct a formal quality assessment. However, we con-
sidered the research method employed in each article during the
data extraction process, as it indicates the reliability of the find-
ings. If conflicts arose during the data synthesis, we considered
this information to assess the credibility of conflicting statements.

3.1.4 | Data Extraction

For data extraction, we utilized a structured form to gather the
following information for each article:

« Title

» Authors

« Publication year

« Publication outlet

« Publication outlet type (conference, journal, workshop)
« Research method (inferred if not explicitly mentioned)

« Topic

By systematically extracting these details, we aimed to organize
and analyse the articles efficiently.

3.1.5 | Data Synthesis

We performed a thematic analysis to distil the qualitative in-
formation from the selected articles. The researcher takes an
active role in generating codes from the qualitative data guided
by the research question [18]. In this analysis, the researcher
actively generates codes that capture relevant features of the
data and aggregates them into themes. We followed the six-
step process outlined by Braun and Clarke [19] for thematic
analysis:

1. Familiarize with the data: We actively read the primary
materials to gain a deep understanding of the data.

2. Generate initial codes: We annotated data segments with
preliminary codes, ensuring a detailed and contextualized
representation.

3. Search for themes: We examined the list of codes and ex-
plored how they could be combined into cohesive themes.
We considered the relationships between codes and
themes, organizing them hierarchically.

4. Review the themes: We revisited the themes and codes to
ensure they accurately represented the dataset. We consid-
ered distinguishing criteria for each theme and discussed
any ambiguous ones.

5. Define and name themes: We gave each theme a working
title and carefully examined their relevance to the research
question. By incorporating sub-themes, we ensured that
the themes were not overly complex or broad.

We utilized the MaxQDA (https://www.maxqda.com/) software
to facilitate the coding and theme-building process to maintain the
traceability of codes and themes to their sources. The replication
package [16] contains exports of the code system. This software
helped organize and analyse the qualitative data effectively.

3.2 | Participatory Action Research

The application of action research in this study follows the
guidelines provided by Baskerville [20]. By employing action re-
search, the study aims to bridge the gap between academia and
industry by putting theoretical concepts into practice [21]. This
approach enables active participation in the project, allowing the
researchers to introduce changes, observe the effects, and utilize
the gained knowledge to adapt both the theory and actions.

The process of the study followed the well-established cyclical
model introduced by Susman and Evered [22], which consists of
the following phases:

« Diagnosing: Identify and choose a significant and relevant
problem.

« Action planning: Consider alternative interventions for
solving the problem.

« Action taking: Put the intervention into action and ob-
serve its effects.

« Evaluating: Study the consequences of the intervention.

« Specifying learning: Reflect on the evaluation and iden-
tify general findings.

As Kemmis et al. [23] point out, in reality, the phases of this cycle
might overlap, and the process is more responsive to change as
plans might change due to organizational constraints or new in-
sights. Data from these ‘failed’ cycles are still valuable as they
may improve our understanding of the context in which actions
can be applied successfully and the circumstances in which they
may not be as effective.

As context for the first action research case, we chose an open-
source software project of our research group to gain a deeper
understanding of testing microservices and enhance our theory.
Section 4.2.1 details the context of the project as a suitable
microservice project. The project was developed and main-
tained by three core developers, the lead author of this study
being one of them. The action research study was carried out by
a fourth developer, who is also a co-author of this article. This
executing developer implemented all the interventions under
the close supervision of the core developers. An exception was
some CDC tests for dedicated interactions that the core developers
implemented towards the end of the study. We captured their
experience and opinions with exit interviews. Section 6 dis-
cusses the limitations of the convenience sample and potential
role conflicts.

40f 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://www.maxqda.com/

3.2.1 | Data Collection

We collected the following three different kinds of data to trian-
gulate the findings:

Developer interviews and observation: We conducted semi-
structured interviews with each of the three core developers. We
let them implement CDC tests for the same HTTP-based inte-
gration for comparability and asked them to share their impres-
sions in interviews. We compared their implementations and
their procedures to discover similarities and differences. We
provided them with the same materials and documentation and
instructed them equally. We created an interview guide with
all the relevant questions that helped us to stick to the topic of
interest. The interview had four phases: initial training materi-
als, CDCT setup, CDCT implementation, and CDCT in general.
Appendix A details the interview guide.

Defect seeding: We applied defect seeding to evaluate how
well the CDC tests capture incompatibilities as Lehvd et al. [6]
applied it as well. We implanted integration defects into the code
and evaluated if the CDC tests discovered them. We considered
the following aspects regarding changes that may introduce
defects:

« Change on the consumer or provider side
« Change on request, reply, or event

« Change on query parameter (HTTP), path parameter
(HTTP), or payload attribute

« If payload change: change on mandatory or optional
attribute

« Removal, renaming, addition, increase of value range, or
decrease of value range

« Regarding HTTP: status codes, headers, HTTP method,
URL changes

We removed impossible changes, for example, changing query
parameters of an event, because our messaging mechanism
AMQP did not support any query parameters. For all remaining
changes, we individually identified if and under which circum-
stances the changes can produce an incompatibility.

Experiential learnings: By iteratively conducting an action
research study, we gained practical experience with our the-
ory. This experience is based on participation in designing
and implementing consumer-driven contract testing in the
JValue project and contributes to the overall understanding of
the topic.

4 | Results

The result of our study is a theory, abstract knowledge aimed at
explaining a phenomenon or predicting outcomes, primarily a
set of (typically interrelated) hypotheses rooted in data. We pres-
ent this theory in the format of guidelines on when and how to
use CDCT to approach the challenge of syntactic interoperabil-
ity of microservices.

The first 2 subsections detail the data on which we base our in-
sights. Section 4.1 presents the selected literature while Section 4.2
presents the action research case. Section 4.3 gives an overview of
the different advantages, disadvantages, and challenges of CDCT
and infers when CDCT is a suitable testing technique to ensure
syntactic interoperability. Section 4.4 complements the results
with eleven guidelines on how to apply CDCT.

4.1 | Selected Literature

We followed the procedure described in Section 3.1.4 to identify
relevant literature for further analysis. Table 1 gives an overview
of the eleven selected studies. None of the authors of this study
authored any of the selected articles. Figure 3 illustrates the sta-
tistics of the selected literature. Figure 3a depicts the distribu-
tion of publication years. The publication dates range from 2018
to 2022, with an increase in the number of relevant publications
in more recent years. However, the literature sample is too small
to infer a trend over time. Figure 3b displays the distribution
of publishing outlets for the selected articles. The outlets of the
selected literature are very diverse, indicating that CDCT is a
topic appealing to a variety of publication outlets. Conference
articles dominate the literature pool, accounting for 7 out of 11
articles. Additionally, three articles were published in journals,
and one was a workshop paper. Figure 3c provides an overview
of the topics covered in the selected articles. Four articles focus
on testing in microservice-based systems in general, and an-
other four specifically address contract testing. Two articles by
the same author explore architecture visualization, and one ex-
plores evolvability aspects.

4.2 | Action Research Procedures

We decided to build out the theory by incorporating participa-
tory action research, as the selected literature contained limited
empirical data. The remainder of this section describes the proj-
ect context and the implementations and observations of tested
interactions and defect seeding.

4.2.1 | Project Context

The JValue Open Data Service (ODSv2) project offers ETL-like
functionality for open data. The microservice-based architec-
ture was cut according to the different steps of the ETL func-
tionality (Figure 4). The Datasource Service is responsible for
data extraction from a data source, the Pipeline Service for data
transformations, the Query Service for loading the data into a
sink, and the Notification Service for notifying clients of newly
arrived data. Each microservice has a separate database to gov-
ern its data. The monolithic user interface (UI) accesses the
backend API via HTTP calls. Traefik (https://www.traefik.io)
serves as a facade to the backend, hiding the complexity behind
it by forwarding the requests to the suiting microservice based
on a fixed set of routing rules. Asynchronous events facilitate
communication between microservices. RabbitMQ (https://
www.rabbitmqg.com) acts as a message broker with publish-
subscribe functionality via the AMQP protocol. Instead of send-
ing out events directly, every microservice instance writes into

50f 16

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://www.traefik.io
https://www.rabbitmq.com
https://www.rabbitmq.com

TABLE1 | Selected literature.

Ref Title Year Outlet Outlet type
[7] Testing for Event-Driven Microservices Based on 2022 APSEC Conference
Consumer-Driven Contracts and State Models
[13] An Empirical Analysis of Microservices Systems 2022 SEAA Conference
Using Consumer-Driven Contract Testing
[24] Version-based and risk-enabled testing, monitoring, 2022 Journal of Software: Journal
and visualization of microservice systems Evolution and Process
[14] On Testing Microservice Systems 2021 FTC Conference
[6] Consumer-driven contract tests for microservices: A case study 2019 PROFES Conference
[25] Consumer-Driven API Testing with Performance Contracts 2018 Workshops of ESOCC Workshop
[26] Design, monitoring, and testing of microservices 2021 JSS Journal
systems: The practitioners’ perspective
[27] Using service dependency graph to 2018 COMPSAC Conference
analyse and test microservices
[12] Industry practices and challenges for the evolvability 2021 EMSE Journal
assurance of microservices: An interview study
and systematic grey literature review
[28] Research on Microservice Application Testing System 2020 ICISCAE Conference
[5] A Test Concept for the Development of 2021 ICSEA Conference

Microservice-based Applications

an outbox table in their database. A separately deployed outbox
container sends all events in the outbox table at least once to
the message broker. This implementation ensures consistency
between different network interactions (writing into a database
and sending out events). This pattern is known as the transac-
tional outbox pattern (https://microservices.io/patterns/data/
transactional-outbox.html).

All microservices share one common code repository. A core
team of three employed developers led the project, with several
students participating and supporting the project over time in
the form of theses or university projects and seminars. Table 2
gives an overview of the project members at the time of the
action research study. As is typical for university projects, the
employed core developers allocated varying amounts of time
to the project. Student 1 was the executing researcher in this
part of the study, who actively participated in the project and
introduced CDCT. The three core developers all participated
in implementing a subset of the consumer and provider tests
and shared their experiences and opinions in the exit inter-
views. Student 2 did not actively participate in the study but
worked on DevOps topics like the deployment to Kubernetes
in parallel.

The project facilitated a continuous integration (CI) pipeline
with three phases. Phase 1 lints, unit tests, and executes isolated
black-box tests on every microservice validating functional re-
quirements. Phase 2 executes functional system tests against
a complete backend deployment with the API facade. Phase 3
publishes a Docker container image per microservice. A docker-
compose file allows easy deployment.

4.2.2 | Iterations

We applied nine iterations over a period of three months.
Table 3 describes the underlying problem and the planned ac-
tion of each iteration. The replication package [16] contains
code diffs of each action research iteration. The executing
researcher and one or more core developers determined each
intervention in a joint decision in regular subject-specific
meetings. The executing researcher advised and mainly exe-
cuted the interventions. Each successful iteration that solved
the initial problem of the iteration ended with a pull request.

4.2.3 | Implementation

We used the Pact (https://pact.io/) library to implement
consumer-driven contract testing, integrating it into our existing
DevOps workflow. We aligned the test execution to the exist-
ing testing setup by providing npm scripts to execute consumer
and provider tests. Additionally, we added the consumer tests
to the build steps in the CI pipeline (Figure 5). We introduced
the provider tests to the CI pipeline on the same level as the sys-
tem tests, allowing parallel execution and maintaining pipeline
efficiency.

This integration reflects a practical application of DevOps
principles by ensuring fast feedback cycles, continuous valida-
tion, and automation of quality checks across service bound-
aries. To validate the provider API against the consumers'
expectations, we had to transmit the encoded expectations
- the contract files that are created by the consumer tests

6 of 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://microservices.io/patterns/data/transactional-outbox.html
https://microservices.io/patterns/data/transactional-outbox.html
https://pact.io/

4 -
n 3 %)
(] [}
< 3
& E
8 8
o 27 =
2 2
g g
S E]
Z z

1 -

O -

2018 2019 2020 2021 2022 conference journal workshop
Publication Year Outlet Type
(a) Publication years of selected literature (b) Publishing outlets of selected literature

Architecture visualization
Testing (general)

Evolvability

Contract testing

(c) Topics of selected literature

FIGURE3 | Statistics of selected literature.

Monolithic Ul
HTTP Client
Edge Server (Traefik) Server
v v 1 ¥ y
Datasource Service Pipeline Service Query Service Notification Service
A DB 7 DB X OB . o5

Message Broker
(RabbitMQ)

Scheduler

FIGURE4 | JValue ODS architecture.

7 of 16

85Us01 7 SUOWILLIOD BAIERID 3ol dde 8y} Aq pausenoh a1e S3jo e YO ‘8SN JO S9N 10} AReiq 1 8UIIUO A8|IM UO (SUORIPUOD-PLE-SWLBH LD A8 | 1M ARe.q|1 U1 |UO//SCRY) SUORIPUOD PUe SWie | 84} 83S *[G202/TT/TT] Uo ARiqIT8uljuo A31IM ‘9000L JAIS/Z00T OT/I0p/W00 A8 1M Aelq 1juluo//Sdny Wwol pepeojumod ‘S ‘520z ‘689T660T

- to the provider tests. This step was especially challenging
and required two attempts to find a satisfying solution. First,
we added the consumer contracts to the version control via

automated commits. Later, we moved to a CI feature called
artefactsin the CI pipeline itself, making the consumer con-
tracts available in later CI steps. This approach relies on all
microservices being maintained in one common repository.

Service n provider

test

TABLE 2 | Project members at the time of the action research study. We also considered using the Pact Broker as a contract broker.
Ultimately, we decided against it to keep the solution as simple
Education level Weekly time in project as possible.
CoreDev 1 Master's degree 25h (PhD candidate)
CoreDev 2 Master's degree 15h (Developer) .
4.2.4 | Tested Interactions
CoreDev3 Bachelor's degree 5h (Student worker)
Student 1 Bachelor's degree 30h (Master thesis) HTTP-based Interactions: We tested three HTTP-based inte-
rations: UT and Pipeline Service, UI and Query Service, and Ul
Student 2 Bachelor's degree 30h (Master thesis) £ e bett M . Query Serv .
and Notification Service. In total, we discovered four existing
TABLE 3 | Action research iterations at JValue.
Problem Action
1 Missing CDCT setup Introduce minimal example, automated
commits for consumer contracts (for CI)
2 HTTP interactions between UI and Write corresponding CDCTs
Pipeline Service untested
3 AMQP interactions between Notification Write corresponding CDCTs
and Pipeline Service untested
4 CDCT setup not mature Add convenience scripts, CI artefacts instead of
automated commits to pass contracts to providers
5 HTTP interactions between UI and Write corresponding CDCTs
Query Service untested
6 AMAQP interactions between Pipeline Write corresponding CDCTs
and Query Service untested
7 CDCT Docker containers download CDCT Optimize Docker image by reordering the layers
dependencies with every build
8 Optional attributes are not covered Optional attributes must be at least
once present and once missing
9 Inconsistencies of status codes and response Include changed or deleted resource in
payload on update and delete endpoints response, make status codes consistent
Service 1 build & test System test Sl
i : ' —> -
Docker build) ' ' publish
- - Service blackbox test ' '
(lint, unit tests) ' !
-] E Service 1 provider .
Service 2 build & test : test ; Service 2
Docker build) >, ' publish
- . Service blackbox test '
(lint, unit tests) '
;) Service 2 provider
Service n build & test test : Sorvicen
Docker build . ' publish
B . Service blackbox test !
(lint, unit tests) i

FIGURE 5 | JValue ODS continuous integration with CDCT (added steps are coloured green).

8 of 16

Software Testing, Verification and Reliability, 2025

95UB917 SUOWIWLIOD SAITEa1D 31qeal|dde sy Ag peusenob afe sapie VO ‘8sN JO S3|nJ Joy Aleld 1 auljuo A3|IA UO (SUONIPUOD-PUE-SLLLIBIAL0Y A3 Ae1g 1 [BU1|UO//:SA1L) SUONIPUOD Pue SWS 1 8U) 885 *[G202/TT/TT] Uo Akelqiauliuo AS|IAM ‘9000L IAS/Z00T OT/I0P/M0d A3 1M ARelq 1 |BU1|UO//:ScY WOJ) pepeo|umod ‘S ‘SZ0Z ‘689T660T

integration issues during the implementation. The consumer
and provider assumed different value ranges on some JSON at-
tributes in two of the four integration issues. The other two is-
sues were based on discrepancies if some JSON attributes were
optional or mandatory.

AMQP-based Interactions: Pact provides a generic API for
testing asynchronous communication that enables the extension
of the CDC tests to event-based messaging. However, due to the
transactional outbox pattern, we could not use the library, lead-
ing to a more complex test setup. We had to start the database, the
outbox service, and the AMQP broker to create the contracts. We
tie this complexity to other architectural design decisions like the
transactional outbox pattern rather than to testing message-based
interactions per se. We discovered no integration issues.

4.2.5 | Defect Seeding

We implanted integration defects into the application to evaluate
the effectiveness of the written consumer-driven contract tests.
Table 4 shows the possible consumer-side integration defects we
systematically identified. We artificially added such defects to
check whether CDCT would be able to catch those defects. Out
of the nineteen seeded consumer-side defects, the tests identi-
fied eleven. Five more of those could have been identified if we
had additional consumer-side interactions that took such a case
into account, increasing the potentially revealed defects of this
category to 16. CDCT could not reveal the remaining three de-
fects, which revolved around a decreasing value range in JSON
attributes.

Table 5 shows the integration defects we systematically identified
on the provider side. We artificially added such defects to the code

TABLE4 | Systematically derived consumer-side integration defects
used for defect seeding.

Operation CDC
2 £ - Rename 4
- | 85| &
§ & g Incr value range
g | Path param | Incr value range
-
& = opt | Rename v
E ; 3 Delete 4
O '3 Rename v
2 | g
= Incr value range
3 Rename v
Q © e Add
= 5 a2
g 2 9 Decr value range X
z E
= = bS] Rename v
a8} z. g
E| 8 | 2 [Ad /
T 4 g Decr value range X
= Rename v
=
2 o g Add
§ _5 & | Decr value range X
5 g
E = 3 | Rename v
g1 % | £ [Ad v
2| 9 e
< 4 e Decr value range v

v at least one test case revealed the defect
an artificially added consumer-side interaction revealed the defect
X the defect was not revealed

and observed which of them CDCT can reveal. 14 of the 23 seeded
provider-side defects could be detected, while the remaining nine
could not be accommodated with the tests. Here as well, changes
to the value ranges of attributes and parameters constitute the
cases that CDCT was not able to reveal. For many of the other in-
teractions, an assumption we made was that at least one consumer
uses the corrupted query parameter or JSON attribute.

Table 6 summarizes further integration defects we investigated
in the context of HTTP-based interactions, focusing on higher-
level structural changes such as changes to the HTTP headers or
URL paths. The CDC tests were able to reveal all those eleven
defects, although frequently under the assumption that consum-
ers and providers pay attention to headers and HTTP endpoints
that are actually consumed.

In total, we seeded 53 defects. The CDC tests detected 41 of the
overall 53 seeded defects (77%). 11 of the 12 undetected defects
have in common that they involve changes to the value range
of attributes, query, or path parameters. We ground this ob-
servation in the fact that consumer-driven contract tests only
spot-check single values in the value range. From the presented
quantitative data, we derived the insights presented in the fol-
lowing subsections.

4.3 | Advantages, Disadvantages, and Challenges
of CDCT

To better understand when to use consumer-driven contract
testing, we analysed the selected literature and the primary ma-
terials from the action research study for advantages (A), disad-
vantages (D), and challenges (C) of CDCT:

Al Test isolation: The consumer and provider part
of the test can be executed in isolation, leading to
more stable and deterministic test environments and
faster test execution with a faster feedback cycle
[5, 6, 13, 28].

All three interviewed developers of the action research
study confirmed a faster test execution than the service
black-box tests and a faster feedback cycle.

A2 Disclosure of interface incompatibilities (replac-
ing integration tests): CDC tests examine if contents
provided by an API provider conform to the expecta-
tions of consumers. API changes can be evaluated in
this fashion if they break consumers' expectations, ex-
posing incompatible interfaces [5-7, 12, 14, 25, 26, 28].

Due to a similar scope, CDCT can (partially) replace
integration tests [5, 6].

The defect seeding of the action research study backed
up this advantage with quantitative assessment: 41 of
53 seeded incompatibilities were caught by the imple-
mented CDC tests.

A3 Awareness of consumers: If applied consistently
throughout the project, each microservice is aware of
all its consumers [6, 25]. This knowledge simplifies co-
ordination and impact analysis of API changes.

90f 16

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

TABLE 5

TABLE 6 | Derived HTTP-based integration defects used for defect seeding.
Change Precondition CDC
N Change the HTTP response status code v
2 | Delete an HTTP header Provider expects the header v
é Rename an HTTP Header Provider expects the header v
Z | Change URL of an API call v
S Change the HTTP method of API call v
Change the HTTP response status code Consumer expects the response status code v
o | Delete an HTTP header Consumer expects the header v
? Rename an HTTP header Consumer expects the header v
3 | Delete an HTTP endpoint Consumer uses the HTTP endpoint v
E Change URL of an HTTP endpoint Consumer uses the HTTP endpoint v
Change the HTTP method of an HTTP endpoint | Consumer uses the HTTP endpoint v
v at least one test case revealed the defect
X the defect was not revealed
A4 Provider evolution based on actual consumer

A5

Systematically derived provider-side integration defects used for defect seeding.

Operation Precondition CDC

g | 3 Delete >= 1 consumer uses the query param v
é:; % .g Rename >= 1 consumer uses the query param v
S | Decr value range | >= | consumer uses the query param X
. | Pathparam | Decr value range X
g Té Delete >= | consumer uses the JSON attribute v
E .% Rename >= | consumer uses the JSON attribute v
E 3’5’ S | Decr value range | >= 1 consumer uses the JSON attribute X
T }% Delete X
= g Rename v

z | £
2 g | Add v
- ~ | Decr value range X
= Delete >= 1 consumer expects the JSON attribute v
2 . _g Rename >= 1 consumer expects the JSON attribute v
% g o Incr value range >= 1 consumer expects the JSON attribute X
E % 3 Delete >= 1 consumer expects the JSON attribute v
E % ’g Rename >= | consumer expects the JSON attribute v
T v 2 | Incr value range >= 1 consumer expects the JSON attribute X
= | Delete >= 1 consumer expects the JSON attribute v
gﬂ . ,g Rename >= 1 consumer expects the JSON attribute v
% E’ S | Incr value range >= 1 consumer expects the JSON attribute X
E % 3 Delete >= 1 consumer expects the JSON attribute v
:% :CZ> g Rename >= 1 consumer expects the JSON attribute v
< 2 £ | Incr value range >= 1 consumer expects the JSON attribute X

v at least one test case revealed the defect
X the defect was not revealed

needs: CDC tests inform API providers how each
consumer uses their API. This knowledge enables
API providers to drive the API by the actual business
needs of consumers [6].

Contracts as communication tools between
teams: CDCs can serve as a communication medium

A6

between different development teams making con-
sumer expectations explicit [6].

Improved API and code design: The developer in-
terviews of our action research study highlighted that
adopting CDCT can lead to a better API and code de-
sign by taking the consumers' perspective. We found ev-
idence for that in one developer reporting the redesign

10 of 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

A7

D1

D2

C1

C2

C3

C4

of editing operations not to require a fetching operation
afterward and another reporting the refactoring of the
consumer for better testability via dependency injec-
tion. Two developers mentioned adopting the robust-
ness principle [29] by ignoring all fields in transmitted
models that the consumer does not need.

Adapter testing of UIs: We infer from the experience
in our action research study that using the user inter-
face as a test driver for integration and system tests in an
automated way is expensive and, thus, not commonly
adopted. CDCT, however, enables simplified testing of
the compatibility of the user interface with backend ser-
vices as the consumer test can be implemented similarly
to a unit test to run in isolation (see Al).

No test of functional behaviour: CDC tests cannot
validate the functional behaviour of consumers. Only
those parts of consumer code are tested that execute
the API calls [6].

Two interviewed developers of the action research
study reported that CDCT only validates interopera-
bility but no functionality. They could not replace the
service black-box tests but only complement them.

No application to external systems: CDCT requires
coordination with the integration counterpart [6]. If the
integration counterpart is an external system without
control over it, implementing CDCT is not possible [13].
Waseem et al. [26] report the extensive use of third-
party resources in microservice systems as an imped-
ing factor for adopting CDCT.

Lack of adoption: Bogner et al. [12] list CDCs as the
third most common evolvability pattern, while Waseem
et al. [26] found that CDCT is used sparingly. The tool-
ing ecosystem seconds their perception with the frequent
mention of only two tools: Pact (https://pact.io/) and
Spring Cloud Contract (https://spring.io/projects/sprin
g-cloud-contract).

As an implication, the restricted choice of tooling might
be a hurdle for the adoption of CDCT.

Learning curve as entry barrier: Lehvi et al. [6]
report that the majority of time in adopting CDCT
was spent learning and researching the testing tech-
nique. Learning another technology might pose an
entry barrier for CDCT.

Two interviewed developers of the action research study
stressed an initial training effort. The same two devel-
opers estimated the effort to write CDC tests larger than
unit tests but smaller than service black-box tests, while
the third developer found it the most effort of the three.

Effort majorly on consumer side: The CDCT imple-
mentation on the consumer side takes more effort than
on the provider side [6]. This imbalance has to be con-
sidered in resource planning when adopting CDCT.

Rising complexity with the increasing number of
services: Checking the test results with an increasing
number of inter-service connections becomes incon-
venient and prone to error [24].

C5 Long-running transactions across multiple ser-
vices: Long-running transactions over multiple micro-
services make CDCT more challenging and complex

[7].

C6 Communication obstacles with larger team sizes:
Waseem et al. [26] identified the communication obsta-
cles caused by an increased team size per microservice
as one of the reasons for the lower adoption of CDCT in
their examined sample. We logically infer that larger
team sizes might pose a challenge to CDCT. However,
fully understanding this challenge requires further em-
pirical data.

C7 Contract exchange: The transmission of consumer
contracts to the provider tests is an inherent challenge
to CDCT [6].

The action research study showcases that this chal-
lenge applies not only to multi-repository setups. Two
developers listed the contract exchange as a challenge,
mainly since solving it might introduce additional com-
plexity, like operating a contract broker.

C8 Testing different code versions: We infer from the
open point of Schneider et al. [5] to enable CDCT on dif-
ferent branches that testing different code versions and
keeping track of the version compatibilities is a further
challenge.

C9 Uncovered changes in validity ranges of parame-
ters: The defect seeding results of our action research
study show that changes in the validity range of attrib-
utes or parameters are challenging to discover with
consumer-driven contract tests.

These findings constitute a significant part of the theory we
built of CDCT and support us in generating new hypotheses.
Among others, we can set the disadvantages and challenges in
relation to the advantages to reason about when CDCT should
be applied.

Answer to RQ1: When to apply CDCT?

Use consumer-driven contract testing to address the aforemen-
tioned problems when

a) the pool of API consumers is limited,

b) the API consumers and their needs should drive the APIs of
the providing microservices (instead of API providers spec-
ifying the API by themselves),

c) isolated tests are favoured over integration tests, and

d) resources are given to learn, set up, and apply the testing
technique consistently.

4.4 | CDCT Guidelines

Similarly, we derived guidelines from the systematic literature
review and the action research findings. We refrain from giving
in-depth guidance on how to apply consumer-driven contract
testing on a technical level, as the technology used significantly

11 of 16

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://pact.io/
https://spring.io/projects/spring-cloud-contract
https://spring.io/projects/spring-cloud-contract

impacts how consumer-driven contract tests might be written.

Instead,

we highlight generic guidelines that apply in broader

project contexts independent from the tool used to implement
consumer-driven contract tests. We arrange the guidelines into
the categories of adoption guidelines (GA), implementation
guidelines (GI), and coordination guidelines (GC). Please note
that we did not collect enough data on the coordination guide-
lines to assert their usefulness in the action research study.

Answer to RQ2: How to apply CDCT?

GA1l

GA2

GA3

GA4

GI1

Adopt CDCT incrementally: Adopt CDC tests in
an iterative way to discover impediments early. Start
with a prototype and incorporate process decisions
into the adoption, like how to get the coordination
between teams right [6].

The action research findings confirm the usefulness of
this guideline. The nature of our study design iteratively
led to an incremental adoption of CDCT. Before imple-
mentation in its full breadth, we devoted the first four
iterations to designing a vertical prototype. This proto-
type included the test setup with CI pipelines and exam-
ples for all communication technologies used between
services (HTTP and AMQP).

Embed CDCT into the testing architecture:
Complement CDC tests with other established testing
measures to build a comprehensive test strategy or ar-
chitecture [6, 13, 26, 28].

The action research findings confirm the usefulness
of this guideline. We added consumer-driven contract
tests to the existing testing setup. The CDC tests took
a complementary role by focusing on service interop-
erability, while the service black-box tests focused on
functionality, and the system tests acted as smoke tests.

Use the adoption of consumer tests to improve
the code quality of the consumer: Leverage con-
sumer tests to test the consumers’ adapter logic to in-
crease test coverage and improve code quality. With
traditional testing approaches, such adapter tests on
consumers are frequently overlooked due to the high
effort required for integration testing. This guideline is
based on the observations and experiences of the action
research study.

Use the adoption of consumer tests to enhance
the API quality: Writing consumer tests implicates
taking the perspective of consumers and allows to de-
tect inconsistencies in the API design. Adopt the ro-
bustness principle, also known as ‘Postel’s Law' [29],
by curating the parsed content of API payloads to the
content that the consumer really uses. This guideline is
based on the observations and experiences of the action
research study.

Use a contract broker to decouple the test execu-
tion from the location of the microservice's repos-
itory: A contract broker is the most advised solution
to the challenge of exchanging contract files (C7) [5-7,
13, 25, 27]. Utilizing a hosted contract broker makes
the mechanism to exchange contracts independent of

GI2

GI3

GC1

GC2

GC3

whether all microservices share or are distributed over
multiple code repositories.

The action research findings confirm the usefulness
of this guideline. We decided against using a contract
broker due to the mono-repo setup. We experienced
some pain points with this setup, for example, the in-
efficiency of repeating test execution, although the con-
tract did not change. With this experience made, we
recommend using a contract broker instead. The Pact
ecosystem provides an Open Source contract broker.

Add CDCT to continuous integration pipelines:
CDCT execution should be part of the Continuous
Integration pipeline [12, 28]. In combination with
GA2, the priority of different types of tests should be
discussed based on the testing pyramid [13]. Schneider
et al. [5] showcase a non-trivial CI setup and elaborate
on how a contract broker (GI1) is embedded in this
process.

The action research findings confirm the usefulness of
this guideline. As described above, we added the CDCT
execution to the CI pipelines. The mono-repo setup
allowed us to facilitate the contract exchange via a
cache feature between different CI steps. Using CDCT
as regression tests allowed us to detect breaking API
changes with every code change integration.

Develop a strategy to uncover missing contract
tests: We advise developing a strategy to identify test
cases systematically. Lehvi et al. [6] report using HTTP
status codes to distinguish interactions under test for
HTTP-based interactions, while Wu et al. [7] use a state
model in the context of an event-driven architecture.

The action research findings confirm the usefulness
of this guideline. For HTTP-based interactions, we
treated every status code as a different interaction. In
some cases, we tested multiple interactions per status
code, mainly to test the use and omission of optional
attributes. For AMQP-based interactions, we treated
every event topic as an interaction. This strategy pro-
vided us with a consistent and helpful way of identify-
ing test cases.

Communicate consumer needs via contracts: Use
consumer contracts to suggest API changes. Only pro-
ceed with the consumer change once the provider test
ensures compatibility [6].

Communicate breaking provider changes to con-
sumers: Establish a coordination process to announce
changes in the provider API if the API provider has to
make a breaking change [6]. While this guideline might
be of general use to microservice-based projects, it is es-
sential for CDCT. Consumers can adapt their contracts
accordingly before the provider evolves as planned.

Visualize CDCT results in a service graph: The
existing information on API consumers and provid-
ers can be utilized to visualize a service dependency
graph (SDG) [6]. Ma et al. [24, 27] present approaches
to model test results in SDGs to efficiently detect
compatibility anomalies.

12 of 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

GC4 Communicate changes in the value range of at-
tributes and parameters or cover them by func-
tional tests: Changes in the value range of attributes
or parameters might not be caught by CDC tests, es-
pecially if the robustness principle is not adopted cor-
rectly by consumers. This guideline is based on the
observations and experiences of the action research
study, especially the defect seeding.

5 | Discussion

Sections 4.3 and 4.4 outline the CDCT theory we have built
in this study. The primary focus of this theory is to address
the initial research questions: (RQ1) when to apply CDCT
and (RQ2) how to apply CDCT. Practitioners can use the re-
sults of this study for an easy and fast evaluation of whether
CDCT fits their context and can accomplish their goals. If they
adopt CDC testing, they can use the actionable guidelines to
successfully apply CDCT, avoid common pitfalls, and reap
its benefits. Researchers can use the SLR presented in this
paper to get an overview of the field. Further, they can use
the empiric insights from the action research study and the
theory itself to build new hypotheses, extend the work, and
evaluate it.

The theory is still in its early stages. We built a first version of
the theory using a systematic literature review. Subsequently,
we augmented this theory through a participatory action re-
search study aimed at strengthening and broadening the
findings from the literature. Action research is a well-suited
research method to build out an early theory in an evolving
research field. Notably, our base of existing publications was
sparse, which underlines the importance of triangulation via
action research. We intend to conduct follow-up work utiliz-
ing case study research, an approach well-suited for refining
theories before progressing to comprehensive (albeit costly) hy-
pothesis testing.

The limited academic literature we found during our system-
atic review indicates that CDCT is still a niche topic, a very new
topic, or both.

The recency of publications in 2021 and 2022, as illustrated in
Figure 3a, points to the nascent stage of CDCT adoption. The
number of papers is too small to speculate about a possible growth
trajectory. However, we observed that 24 out of the 85 articles
were student theses, indicating that multiple research groups are
currently exploring the topic. Further, we noticed increasing grey
literature on the topic, such as blog articles. While these sources
can contribute to the popularity of CDCT, it is imperative to ac-
knowledge their limitations from an empirically founded research
perspective. Hence, we advocate for future research using appro-
priate empirical research methods. We suggest to further building
out our theory, for example, with the following research designs:

« qualitative surveys and interview studies involving experi-
enced CDCT practitioners,

+ repository mining to delve into the technical facets of
CDCT,

« case studies and action research on CDCT-adopting projects
to evaluate the findings, and

« theory validation studies with questionnaires or controlled
experiments.

Our utilization of participatory action research facilitated such
an acquisition of additional empirical data, enabling triangula-
tion with findings from the literature. The resulting theory is
open to further augmentation and evaluation through subse-
quent action research studies and case study research.

The theory we present is partial by nature, as it is centred around
addressing the research questions posed. When presenting a
theory in the form of guidelines, an important quality criterion
is to ask whether they are mutually exclusive and collectively
exhaustive. Our guidelines achieve mutual exclusivity through
disciplined qualitative analysis. However, due to the early stage
of the theory, the guidelines are not yet exhaustive. While in-
cremental thematic analysis led to a reduction in code system
changes, we cannot claim theoretical saturation, resulting in
gaps within the theory. Consequently, our analysis suggests the
need for more extensive data collection in future studies, par-
ticularly concerning whether and how contracts can be used as
communication tools between teams.

Further, this study brought CDCT into relation to DevOps prac-
tices in several places. For instance, the action research procedure
in Section 4.2 illustrates how continuous integration pipelines can
accommodate consumer and provider tests. An explicit DevOps
challenge is the exchange of contract files between consumer and
provider tests. This can be facilitated by passing contract files
between CI pipeline steps in simple scenarios like our action re-
search case or by operating a contract broker in more sophisticated
projects (see guideline GI1). CDCT may contribute to DevOps' ob-
servability practices, such as providing insights into integration
visualizations (see guideline GC3). We encourage future research
to investigate the relation to DevOps practices. Particularly, the
topics of how complex DevOps workflows, such as deployment to
multiple environments, can be supported by CDCT and how agile
methods might play together with the consumer-driven API evolu-
tion combined with consumer-driven contracts as a communica-
tion medium remain aspects for future work.

Future work may also research how to cover changes in value
ranges of attributes or parameters beyond actively commu-
nicating those (see guideline GC4). Inspirations from other
testing techniques, such as property-based testing, automated
boundary value analysis, and parameterized tests, might be
able to enhance CDCT or complement the testing strategy in
this regard.

Additionally, we propose constructing rival theories for other
approaches addressing the syntactic interoperability challenge
posed by microservices. One such approach uses client code
generators, utilizing API specifications such as the OpenAPI
Specification (https://spec.openapis.org/) for generating code
across multiple programming languages, enabling the techno-
logical independence of microservices. A broader theoretical
framework could discern differences between approaches to-
wards the syntactic interoperability challenge, their potential

13 0of 16

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://spec.openapis.org/

coexistence within projects, and guidelines for practitioners to
select the most suitable approach based on their project context.

6 | Limitations

While this study significantly contributes to the understanding
of CDCT in research, we acknowledge certain limitations in our
approach.

First, the selected literature may be subject to publication bias,
only including peer-reviewed publications in English. While re-
lying on such high-quality data is a strength of our approach,
this might have led to missing relevant work. To mitigate this,
we triangulated the findings with an action research study, in-
corporating firsthand empirical insights complementing the an-
alysed literature.

Second, using a single case in the action research study limits
the generalizability of the findings. We mitigate this by using
the action research study as an evaluation to refine the theory
we first built on the literature, not as the only source of evidence.
Further, our theory constitutes a set of hypotheses we draw from
the data. To make statistically significant claims, follow-up stud-
ies are required to validate those hypotheses.

Third, the analysed materials might not fully cover the topic,
leaving holes in our theory. We acknowledge that further re-
search is necessary to complement our findings, particularly
to add nuanced insights to the results. We tracked the changes
in our code system throughout the analysis (see Figure 6). The
diminishing number of new and changed codes indicates the
proximity to theoretical saturation, indicating a comprehensive

= New codes = Changed codes

c 15
2

[’d

>

"

3 10
o

o

o

<

e 5
"

S

& %\
5 0

2 4 6 8 10

Number of papers coded

FIGURE 6 | Changes to the code system over time.

TABLE 7 | Peer debriefings.

understanding of the phenomenon under study. The replication
package [16] contains the tracked code system changes.

Fourth, we acknowledge potential bias in the action research study
due to arole conflict. One of the project's core developers is the lead
author of this article, who supervised the executing researcher of
this part of the study in their master's thesis. We adopted a strin-
gent approach in our data analysis for mitigating this potential
bias. We considered insights and findings valid only when at least
two interviewees independently confirmed them. This stringent
validation process aimed to enhance the confirmability of the
study's results by ensuring that the perspective of a single individ-
ual did not solely influence the findings but was instead supported
by multiple independent sources.

In addition to these individual mitigation measures, we regu-
larly engaged in continuous professional exchange through peer
debriefing sessions among the co-authors to ‘[...] confirming that
the findings and the interpretations are worthy, honest, and be-
lievable’ [30]. The peer debriefing sessions served as a means to
mitigate potential biases and enhance the confirmability of the
study. Table 7 provides an overview of the peer debriefing ses-
sions, including their respective focus areas. Moreover, inves-
tigator triangulation was employed by having two researchers
independently analyse specific parts of the selected literature
and discuss differences, further enhancing the confirmability of
the study by reducing potential biases.

Despite the limitations, the study offers valuable contributions by
addressing an understudied phenomenon in microservice-based
projects. Our study serves as a starting point for future research
to strengthen, complement, and broaden the presented results.

7 | Conclusion

Consumer-driven contract testing has emerged as a promising
testing technique to address the challenges of syntactic interoper-
ability in microservice-based architectures. Through a systematic
literature review with 11 selected articles and an action research
study with defect seeding, we have made significant strides in un-
derstanding when and how to apply CDCT effectively.

Based on our research, we recommend utilizing CDCT when
certain conditions are met: (a) the pool of API consumers is
known and limited; (b) the needs of the API consumers should
drive the APIs of other microservices; (c) there is a preference for
isolated tests over integration tests; (d) and sufficient resources
are available for learning, setup, and consistent application of
the testing technique. If these conditions apply, organizations
can leverage CDCT to ensure syntactic compatibility between
microservices. CDCT promotes faster feedback iterations than
classic integration testing and supports improving the quality of
APIs and consumer code.

The four adoption guidelines we have identified offer valuable
insights for teams seeking to start out with CDCT by adopting
CDCT incrementally (GA1), embedding CDCT into a testing
architecture (GA2), and improving the consumers' code quality
and the providers’ API quality in one go (GA3, GA4). Moreover,
the three implementation guidelines provide practical steps to

Date Focus
2021-08-13 Determination of the research method
2021-08-24 Planning of the first two iterations
2021-10-28 Preparations for the developer interviews
2021-11-12 Planning of training of developers
(to prepare the interviews)
14 of 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

set up CDCT effectively, considering factors like the contract
exchange with a contract broker (GI1), the automated test exe-
cution with continuous integration pipelines (GI2), and the dis-
covery of missing contract tests (GI3). The four communication
guidelines emphasize the importance of establishing clear com-
munication channels between microservice teams to facilitate
effective contract definition and maintenance. Contracts should
convey consumers’ needs (GC1) and be visualized in service
graphs to detect anomalies (GC3). Providers should communi-
cate breaking changes (GC2), while changes in the value range
of attributes or parameters should be voiced in general (GC4).

While our research significantly contributes to the under-
standing of CDCT, we also identified a notable gap in em-
pirical data on CDCT in the existing academic literature. To
address this gap, we recommend future research endeavours
to collect data through robust research methodologies, such
as qualitative surveys, case studies, and action research stud-
ies. Gathering empirical evidence will strengthen the validity
and applicability of CDCT in real-world scenarios and provide
valuable insights into its impact on API development and mi-
croservice integration.

In addition to filling the gap in empirical data, we see an op-
portunity for future work in comparing CDCT with client
code generation as a potential competing solution to the in-
teroperability problem. Exploring the strengths and limita-
tions of each approach will shed light on their suitability for
different use cases and project contexts. Such a comparative
analysis will further enrich the existing knowledge base and
enable organizations to make well-informed decisions on how
to ensure syntactic interoperability in their microservice-
based architectures.

In conclusion, CDCT represents a promising approach to address
the challenges of syntactic interoperability in service-based ar-
chitectures. Our research has provided valuable insights into its
adoption and implementation. As the field continues to evolve,
further research with empirical data and comparative analysis
has the potential pave the way for broader adoption of CDCT
and its success in facilitating seamless integration and high-
quality API development within microservice architectures.

Acknowledgements

The present work was performed in partial fulfillment of the require-
ments for a cumulative dissertation. We thank our colleagues for their
continuous feedback and proofreading of this article. During the prepa-
ration of this work, the authors used ChatGPT in order to improve and
rephrase written paragraphs. After using this tool/service, the authors
reviewed and edited the content as needed and take full responsibility
for the content of the publication. Open Access funding enabled and
organized by Projekt DEAL.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The datasets generated during the current study are available in a rep-
lication package [16] on Zenodo: https://zenodo.org/records/15364770

References

1. P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, “Micro-
services: The Journey so Far and Challenges Ahead,” IEEE Software 35,
no. 3 (2018): 24-35.

2. S. Newman, Building Microservices (O’Reilly Media, Inc., 2021).

3. S. Baskarada, V. Nguyen, and A. Koronios, “Architecting Microser-
vices: Practical Opportunities and Challenges,” Journal of Computer
Information Systems 60, no. 5 (2020): 428-436.

4.N. Dragoni, S. Giallorenzo, A. L. Lafuente, et al., “Microservices:
Yesterday, Today, and Tomorrow,” in Present and Ulterior Software
Engineering (ChamSpringer, 2017), 195-216.

5. M. Schneider, S. Zieschinski, H. Klechorov, et al., “A Test Concept
for the Development of Microservice-Based Applications,” in 2021 Inter-
national Conference on Software Engineering Advances (ICSEA) (IEEE,
2021), 88-97.

6.J. Lehvi, N. Mikitalo, and T. Mikkonen, “Consumer-Driven Contract
Tests for Microservices: A Case Study,” in International Conference on
Product-Focused Software Process Improvement (Springer, 2019), 497-512.

7.C. F. Wu, S. P. Ma, A. C. Shau, and H. W. Yeh, “Testing for Event-
Driven Microservices Based on Consumer-Driven Contracts and State
Models,” in 2022 29th Asia-Pacific Software Engineering Conference
(APSEC) (IEEE, 2022), 467-471.

8.1. Robinson, “Consumer-Driven Contracts: A Service Evolution
Pattern,” (2006), accessed on December 12, 2023, https://martinfowler.
com/articles/consumerDrivenContracts.html.

9. Microsoft, “Consumer-Driven Contract Testing (CDC) - Code With
Engineering Playbook,” (2023), accessed on December 12, 2023, https://
microsoft.github.io/code-with-engineering-playbook/automated-testi
ng/cdc-testing/.

10. I. Ghani, W. M. Wan-Kadir, A. Mustafa, and M. 1. Babir, “Micros-
ervice Testing Approaches: A Systematic Literature Review,” Interna-
tional Journal of Integrated Engineering 11, no. 8 (2019): 65-80.

11. M. Waseem, P. Liang, G. Mdarquez, and A. Di Salle, “Testing Mi-
croservices Architecture-Based Applications: A Systematic Mapping
Study,” in 2020 27th Asia-Pacific Software Engineering Conference
(APSEC) (IEEE, 2020), 119-128.

12.]. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Industry
Practices and Challenges for the Evolvability Assurance of Microser-
vices: An Interview Study and Systematic Grey Literature Review,”
Empirical Software Engineering 26 (2021): 1-39.

13. H. M. Ayas, H. Fischer, P. Leitner, and F. G. D. O. Neto, “An Em-
pirical Analysis of Microservices Systems Using Consumer-Driven
Contract Testing,” in 2022 48th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA) (IEEE, 2022), 92-99.

14. A. Koschel, I. Astrova, M. Bartels, M. Helmers, and M. Lyko, “On
Testing Microservice Systems,” in Proceedings of the Future Technolo-
gies Conference (Springer, 2021), 597-6009.

15. B. Kitchenham, “Procedures for Performing Systematic Reviews,”
Keele, UK, Keele University 33, no. 2004 (2004): 1-26.

16. G. D. Schwarz, Supplementary Materials for the Study “Ensuring
Syntactic Interoperability Using Consumer-Driven Contract Testing”,
(2025), https://doi.org/10.5281/zenodo.15364770.

17. C. Wohlin, “Guidelines for Snowballing in Systematic Literature
Studies and a Replication in Software Engineering,” in Proceedings of
the 18th international conference on evaluation and assessment in soft-
ware engineering (ACM, 2014), 1-10.

18. V. Clarke, V. Braun, and N. Hayfield, “Thematic Analysis,” Quali-
tative psychology: A practical guide to research methods 222 (2015): 248.

19. V. Braun and V. Clarke, “Using Thematic Analysis in Psychology,”
Qualitative research in psychology 3, no. 2 (2006): 77-101.

150f 16

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

https://zenodo.org/records/15364770
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/articles/consumerDrivenContracts.html
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/cdc-testing/
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/cdc-testing/
https://microsoft.github.io/code-with-engineering-playbook/automated-testing/cdc-testing/
https://doi.org/10.5281/zenodo.15364770

20. R. L. Baskerville, “Investigating Information Systems With Action
Research,” Communications of the association for information systems
2, no. 1(1999): 19.

21. K. Petersen, C. Gencel, N. Asghari, D. Baca, and S. Betz, “Action Re-
search as a Model for Industry-Academia Collaboration in the Software
Engineering Context,” in Proceedings of the 2014 International Work-
shop on Long-Term Industrial Collaboration on Software Engineering
(ACM, 2014), 55-62.

22.G. I. Susman and R. D. Evered, “An Assessment of the Scientific
Merits of Action Research,” Administrative science quarterly 23, no. 4
(1978): 582-603.

23.S. Kemmis, R. McTaggart, and R. Nixon, The Action Research
Planner: Doing Critical Participatory Action Research (Springer, 2014).

24.S.P.Ma, I. H. Liu, C. Y. Chen, and Y. T. Wang, “Version-Based and
Risk-Enabled Testing, Monitoring, and Visualization of Microservice
Systems,” Journal of Software: Evolution and Process 34, no. 10 (2022):
€2429.

25.]. Stahlin, S. Lang, F. Kajzar, and C. Zirpins, “Consumer-Driven API
Testing With Performance Contracts,” in Advances in Service-Oriented
and Cloud Computing: Workshops of ESOCC 2016, 2018 (Springer, 2016),
135-143.

26. M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G. Marquez,
“Design, Monitoring, and Testing of Microservices Systems: The Prac-
titioners Perspective,” Journal of Systems and Software 182 (2021):
111061.

27.S.P.Ma, C.Y. Fan, Y. Chuang, W. T. Lee, S.J. Lee, and N. L. Hsueh,
“Using Service Dependency Graph to Analyze and Test Microser-
vices,” in 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), vol. 2 (IEEE, 2018), 81-86.

28. H. Li, J. Wang, H. Dai, and B. Lv, “Research on Microservice Appli-
cation Testing System,” in 2020 IEEE 3rd International Conference on
Information Systems and Computer Aided Education (ICISCAE) (1IEEE,
2020), 363-368.

29. Postel, J., “Rfc0793: Transmission Control Protocol,” (1981).

30.S. Spall, “Peer Debriefing in Qualitative Research: Emerging
Operational Models,” Qualitative Inquiry 4, no. 2 (1998): 280-292.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section.

Appendix A

Developer Interviews - Interview Guide

1. Training materials

« How did you approach the initial training?

« Were the materials comprehensible?

« Were there unexpected or counterintuitive insights?

« Are there any questions that remain unanswered? If yes, which
ones?

« Was additional material consulted? If yes, why?

2. Clintegration
« How did you approach the integration of CDC tests into the CI
pipeline?
« Were there any issues? If yes, which ones?
» Do you have ideas for improvement?

Implementation of CDC tests

« How was the implementation of CDC tests carried out?
« Identification of service interactions to be tested:
o Which interactions were identified?
o How was the identification process conducted?
o How were different types of notifications handled?
o Did you consider the value ‘Not a Number’ for IDs in
interactions?
« Implementation of consumer-side tests:
o What adjustments were necessary in the UI source code?
o Were there any issues or uncertainties during the imple-
mentation? If yes, how were they addressed?
o Does the separation between test and fixtures files make
sense to you?
« Implementation of provider-side tests:
o What adjustments were necessary in the Notification
Service source code?
o How did you implement the mocking?
o Were there any issues or uncertainties during the imple-
mentation? If yes, how were they handled?
« Did you uncover any software defects?
« Did you encounter any limitations encountered with Pact?
« Did you experience a difference in effort between consumer-
side and provider-side test development?

CDCT in general

« Comparison of CDCT with other testing methods:
o Which testing methods did you employ in the project
previously?
o Did you experience difference in training efforts between
CDCT and these other testing methods?
o Did you experience difference in development efforts
between CDCT and these other testing methods?
o Did you experience difference in test execution efforts
between CDCT and these other testing methods?
o Did you experience difference in runtime efforts between
CDCT and these other testing methods?
« Advantages, disadvantages, challenges, and guidelines:
o Which advantages do you associate with CDCT?
o Which inherent disadvantages do you associate with
CDCT?
o Which challenges do you associate with CDCT?
« Which guidlines do you associate with CDCT? How reasonable
do you think these guidelines are?

16 of 16

Software Testing, Verification and Reliability, 2025

85U0]7 SUOWILWIOD BAIIEa.D) 8|qeol|dde auyy Aq peuseno aJe sajoiie YO ‘88N JO S8|nJ Joj Afeiq1T8UIUO A1 UO (SUONIPUOD-PUR-SWBIAN0D" A8 |1 ATeIq Ul |UO//:SdNL) SUORIPUOD pUe SWwie 1 8y} 89S *[G202/TT/TT] U0 A%lqiT8uliuO AB|1M ‘9000 JAIS/Z00T OT/10p/w0o A8 | Areiq1jeuljuo//sdny wiouy pepeojumod ‘S ‘SZ0Z ‘689T660T

	Ensuring Syntactic Interoperability Using Consumer-Driven Contract Testing
	ABSTRACT
	1   |   Introduction
	2   |   Related Work
	3   |   Research Design
	3.1   |   Systematic Literature Review
	3.1.1   |   Search Strategy
	3.1.2   |   Study Selection
	3.1.3   |   Study Quality Assessment
	3.1.4   |   Data Extraction
	3.1.5   |   Data Synthesis

	3.2   |   Participatory Action Research
	3.2.1   |   Data Collection

	4   |   Results
	4.1   |   Selected Literature
	4.2   |   Action Research Procedures
	4.2.1   |   Project Context
	4.2.2   |   Iterations
	4.2.3   |   Implementation
	4.2.4   |   Tested Interactions
	4.2.5   |   Defect Seeding

	4.3   |   Advantages, Disadvantages, and Challenges of CDCT
	4.4   |   CDCT Guidelines

	5   |   Discussion
	6   |   Limitations
	7   |   Conclusion
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement
	References
	 Appendix A

