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Abstract

Microservices are an architectural style in which
each service typically provides the complete stack of
functions from a user or application programming in-
terface through a domain model all the way to storage
for that model. As a consequence, querying conjunct
data from different microservices becomes a non-trivial
engineering task. In this article, we review older and
established general data integration theory in the en-
terprise context and then compare current microservice
practice with enterprise information integration (EII)
theory as an established approach to data integration.
We find that microservices do not utilize all possible ap-
proaches for data integration that are common in en-
terprises. Specifically, microservices use middleware
only partially and databases are not used at all to in-
tegrate data. Therefore, we further investigate whether,
when, and how these two approaches can be used in
a microservices context and present our findings. With
our findings, we (i) clear the way for fellow researchers
to investigate and improve unused integration strategies
with microservices and (ii) raise the awareness of prac-
titioners that some integration strategies may not work
out of the box with microservices as they do in EII.

1. Introduction

The microservice-based architectural style has been
around for a few years now and is still gaining pop-
ularity, because microservices promise among other
benefits to provide scalability, resilience and a free
choice of technology [1]. Microservices are services
that have an independent life-cycle, especially regard-
ing deployment. They communicate with each other via
lightweight mechanisms over a network as a distributed
system, and are typically built around business capabil-
ities. Often, domain-driven design (DDD) is used for
determining boundaries between microservices [2]. Mi-
croservices cooperate in order to perform work that a
monolithic application would do all by itself.
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The alignment of microservices with business capa-
bilities leads to each microservice having the responsi-
bility for its data. Each service can bring its own per-
sistence mechanism that fits the job best, for example,
a relational database. Direct access to data of other ser-
vices is seen as an improper design practice. Doing so
threatens the independence of microservices and should
be avoided [3].

However, there are scenarios where depending on
data of another microservice is not avoidable. This im-
plies that integrating microservices is a necessity and a
common issue practitioners experience with microser-
vices. While current literature emphasizes some ap-
proaches dealing with this issue, it remains silent regard-
ing older more established data integration techniques.

Those unutilized techniques do have their advan-
tages over the recommended ones in some aspects. For
example, using databases to join data could provide a
significant performance improvement. This leads to the
following research question:

RQ: What can microservices learn from enter-
prise information integration?

Therefore, we conduct a gap analysis that com-
pares established data integration approaches known
from enterprise information integration (EII) to current
approaches of microservices. The contributions of this
paper are the following:

e The development of a model focusing on system
architecture aspects of EII. This model is suitable
for a gap analysis in order to compare EII to mi-
croservice data integration practices. (Section 4)

* The determination of a list of best-possible mech-
anisms for integrating microservices by a litera-
ture analysis. (Section 5)

* The analysis whether the developed EII model ad-
equately captures the data integration approaches
of microservices or has to be adjusted to the con-
text of microservices. (Section 6)



With our findings we (i) clear the way for fellow re-
searchers to investigate and improve unused integration
strategies with microservices and (ii) raise the awareness
of practitioners that some integration strategies may not
work out of the box with microservices as they do in EII.

Section 2 gives an overview of the related work. Sec-
tion 3 covers the overall research process of the article.
We develop an analysis model for EII in Section 4, de-
fine a target for the model in Section 5 and finally apply
the model on the microservices domain in Section 6. We
discuss limitations of the results in Section 7 and give an
outlook on future work in Section 8.

2. Related Work
2.1. Data Integration and EII

Lenzerini [4] defined data integration as the integra-
tion of data from multiple sources to generate a unified
view. In the context of this paper, these data sources are
controlled by different applications and the unified view
is required to add some business capabilities to the appli-
cation environment. In other words, we aim for a query
that requires data that is under the control of different
applications.

In the enterprise environment data integration with-
out making use of centralized data integration systems
like data warehouses is called enterprise information in-
tegration (EII) [5].

A larger field in data integration research is about
semantic data integration and describes mappings from
data of one source to data of another source [4]. Contex-
tual knowledge is necessary to combine data from vari-
ous sources according to those mappings. For example,
we need to know that the attributes ‘surname’ and ‘last_-
name’ of customer data from different sources mean the
same thing. This enables creating a query mechanism
that includes data from both sources. This point of view
regarding data integration is important and cannot be
neglected, though we want to focus on an architectural
point of view in this article.

2.2. Microservices

Microservices are an architectural style that emerged
from industry. There is no standardized definition of
this term, but there are common characteristics that mi-
croservice architectures share. Literature exists plenty
regarding this topic, especially practitioner books due
its industry origin. Parts of the literature are presented
in the literature review in Section 5.

We understand microservices as a set of indepen-
dently deployable services that interact in a lightweight
way over the network [2]. This decomposition of appli-

cations into smaller ones that work together implicitly
means that data integration is required more frequently.
According to Lewis and Fowler [2], those services are
organized around business capabilities. Cross-cutting
functionalities that require data from multiple business
capabilities raise the need for data integration. There is
a natural need for thinking more about integration be-
cause “if you’re building more services you end up with
more integration problems” [6].

We identify two general types of interaction be-
tween microservices: Triggering distributed behavior
and querying distributed data. The separation of both
concepts is derived from distinguishing writing and
reading data. As an example, a webshop system could
consist of microservices for the management of cus-
tomers, orders, and deliveries. Triggering distributed
behavior requires the action of multiple services. For
example, a correct order should always trigger a deliv-
ery eventually. Querying distributed data means to com-
bine data from multiple services. For example, the sales
department wants to send 10-percent-off coupons to all
customers that bought a product in the last 3 months as
an advertisement. Data from the customer service has to
be combined with data from the order service.

Both interactions are commonly seen in
microservice-based architectures. Communication
mechanisms can support both. In this paper, we want
to focus on the second scenario where data of multiple
microservices has to be combined in order to implement
some cross-cutting functionality.

2.3. Microservice Data Integration

Data integration has not been investigated much in
microservices research. We only found a smal number
of articles that address aspects of this field of research.

Villaga, Azevedo and Baido [7] investigated how mi-
croservices can be used to query across polyglot persis-
tence implementations. This querying aspect matches
our understanding of data integration. They identified
five major strategies: Shared Database Infrastructures,
CQRS, Event Data Pumps, Data Retrieval via Service
Calls and Canonical Data Models. Parts of these resem-
ble our findings, some differ. For example, we found
that (data) integration on the user interface level is a
valid approach but did not identify canonical data mod-
els as one. They list the pros and cons for each of the
strategies together with example implementations. Ad-
ditionally, each approach is evaluated with character-
istics of ISO/IEC 25010. In our paper, we focus on
the comparison to established data integration models
which covers another aspect of this topic.

Diepenbrock et. al. [8] proposed an ontology-



based metamodel that describes domain models in
microservice-based architectures. This enables the de-
scription of semantics for relationships between domain
models of microservices. This topic is related to seman-
tic data integration while we focus on the architectural
aspects of data integration in microservices-based archi-
tectures.

2.4. Microservices in the Enterprise

Some first publications investigate how microser-
vices fit into the enterprise ecosystem. Some of them
touch the data integration topic but don’t present a de-
tailed analysis on which approaches of the established
solutions present in the enterprise environment are or are
not utilized in microservices as we do.

For example, Yu et. al. [9] introduce a reference
architecture based on microservices “for implementing
and managing enterprise microservices in the context of
enterprise architecture”. They describe building blocks
that are necessary for such an undertaking, highlight
architectural issues, and provide corresponding recom-
mendations. The classical enterprise service bus (ESB)
has to make way for “smart endpoints”. A closer com-
parison of viable (data) integration approaches is not dis-
cussed; however, it is what we focus on.

Bogner and Zimmermann [10] extend original enter-
prise architecture reference models to allow for the inte-
gration of microservices. However, there is no discus-
sion which specific ways of integrating microservices
are viable. In contrast, we present these ways.

Indrasiri and Siriwardena [11] published a practi-
tioner book on microservice in the enterprise and cover
the approaches to sharing data between microservices as
well. They focus on the microservice point of view on
this topic, backed up with experience, while we perform
a gap analysis that determines differences between mi-
croservice practices and established approaches of the
enterprise ecosystem.

3. Research Process

This article compares established enterprise infor-
mation integration (EII) theory with recommended prac-
tices of microservices regarding data integration. Figure
1 shows our overall research process. We first develop
a comparison model that describes EIl. Then we review
microservice literature and analyze existing concepts in
the sampled literature. Finally, we compare our find-
ings with the comparison model from the first step. We
present the results of the steps in the following way:

* Section 4 selects and vets a model of EII and de-
velops a comparison model that is used for a gap

analysis with the microservice domain later on.

» Section 5 reviews existing practitioner literature
on data integration for microservices that has the
highest impact. We discuss the concepts we find.

 Section 6 applies the EIl model of Section 4 to
the domain of microservices discussed in Section
5. The application of the model serves as a gap
analysis that makes the differences between the
approaches visible.

In the following subsections, we provide further de-
tails about the microservice literature sampling in Sub-
section 3.1 and about the concept analysis in Subsection
3.2.

3.1. Literature Sampling

We first performed a two-step literature review on
microservice integration and then compared the results
to established data integration theory. Since microser-
vices emerged from practical experience, we included
most cited grey literature (practitioner books, blog posts,
magazine articles, expert interviews, etc.) as sources.
Their claims about data integration approaches don’t
have to be backed up by science but by experience. We
assume that most cited literature on this topic represents
the popular opinions that we want to investigate in this
paper.

We can integrate data on every architectural level of
a system [12]. We can further narrow this down to the
architectural levels where communication over the net-
work takes place in the microservice domain. Thus, we
decided to search for strategies on how to integrate mi-
croservices in general, without constraining it to data in-
tegration. Taking this detour instead of focusing on data
integration itself from the beginning turned out to be
a necessity, because there hardly exists literature about
data integration in the microservice domain like Section
2 shows.

For the first step, we used Google Scholar, ACM
Digital Library, and IEEE Xplore. We utilized the
software Publish or Perish (version 6.48.6402) to scan
Google Scholar. As search term, ‘microservices’ in dif-
ferent writing styles in the title in combination with the
terms ‘data integration’ was used. We followed the gen-
eral recommendations of Garousi et. al. [13] on how to
conduct a grey literature review explained by using the-
oretical saturation as stopping criteria. Grey literature
is included in Google Scholar search and thus requires
a quality assessment criteria. In order to find literature
with the most impact on the general understanding of
microservice-based architectures, we decided to use the
number of citations as the main impact criterion and in-
clude only grey literature within the 20 most cited works
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Figure 1. Research Process

of the search query result or if they are cited over fifty
times regarding the second step of the literature review.

ACM Digital Library and IEEE Xplore only contain
peer-reviewed literature and thus need no such quality
assessment criteria.

We analyzed the findings and categorized them
according to the following points and only included the
ones into the literature pool that passed the inclusion
criteria.

Inclusion criteria:

 Discussions about different approaches of inte-
grating microservices and how they communicate

Exclusion criteria:

* Descriptions of microservice-based systems, but
no detailed discussions about how they are inte-
grated

* Literature that does not express own opinions and
relies on citation instead of reasoning. We used
those primarily for snowballing in the second step
of the research process.

As the second step, snowballing and further ex-
ploratory search techniques were applied. For snow-
balling, we especially focused on literature that was
described in literature reviews and mapping studies
[14, 15, 7]. We applied the mentioned quality assess-
ment criteria for grey literature (more than 50 citations)
and inclusion criteria for all additional findings.

Section 5.1 presents the results of the literature sam-

pling.
3.2. Literature Analysis

We analyzed the literature that we found during the
sampling process for general integration strategies and

grouped them into categories. Therefore, we transi-
tioned from an author-centric to a concept-centric liter-
ature review by using a concept matrix as Webster and
Watson [16] propose. We enhanced this approach by us-
ing abbreviations in the cells of the tables in order to
provide more detailed information about our findings.

We focused on the architectural point of view and
scanned the literature for conceptual approaches regard-
ing data integration that has an impact on the architec-
tural layer. The results are used for the gap analysis
comparing with established EII.

Section 5.2 presents the results of this analysis.

4. EII Analysis Model

As the first step, we need to define what data inte-
gration means in the enterprise ecosystem. Therefore,
we develop a model that will be applied to the microser-
vice domain in Section 6. Subsection 4.1 presents the
originally selected EII model and Subsection 4.2 intro-
duces slight changes in order to develop a suiting model
for the gap analysis.

4.1. Original EII Model

We reviewed multiple models for integrating appli-
cations and chose the one that seemed to fit best for our
comparison. Some of them were not about architecture
directly. For example, Schwinn and Schelp [17] pro-
posed patterns classified by dimensions as redundancy
and direct or indirect data access. Land and Crnkovic
[18] distinguished integrating software systems between
import and export facilities, enterprise application inte-
gration (EAI), integration on data level, and integration
on a source code level. Still, the architectural perspec-
tive was not represented well.
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Figure 2. Derived Data Integration Model

A promising candidate was the layered model of He
and Da Xu [19]. They found that research for integrat-
ing distributed enterprise systems can be divided into the
communication layer integration, (semantic) data inte-
gration, business logic integration, presentation layer in-
tegration. They also mention more recent technologies
like using an enterprise service bus (ESB). Nevertheless,
these layers represent points that have to be thought of
when integrating systems but not different levels in ar-
chitecture where data integration can take place.

Ziegler and Dittrich [12] proposed a (for us) good
starting point for the model required for the gap anal-
ysis. They claim that data integration in the enterprise
ecosystem can take place on every architectural level of
a system. The model describes how information systems
with physically distributed data can integrate so that it
seems to the outside world like there is only one infor-
mation system.

There are six ways of integrating data derived from
the architectural abstraction levels. The first two refer to
manual data integration performed by the user, the other
four describe a programmatic approach:

Manual Integration: Users directly work with the
different interfaces of systems and integrate the data by
hand. They need to know where the data is located, how
it is represented logically, and how the semantics are de-
fined.

Common User Interface: There is a common user
interface, but the data presentations of different data

sources are separated from each other. The user still has
to homogenize and integrate data by hand, but does not
have to use different user interfaces.

Integration by Applications: Integration applica-
tions access different data sources in order to return in-
tegrated results to the user or other clients.

Middleware Integration: The middleware under-
takes the common integration functionality, but integra-
tion efforts are still required in the application.

Uniform Data Access: There is a global unified
view of physically distributed data that is used to query
the data. The integration is performed at runtime.

Common Data Storage: Data is physically trans-
ferred to a new data storage in order to integrate it.

4.2. Derived Comparison Model

We agree with the statement that data integration can
potentially take place on every level of the architecture
[12]. The proposed reference architecture with these ar-
chitectural levels is suitable, but there are some open
points that need clarification and enhancement.

Manual data integration is undesirable in our opin-
ion. This aspect is found in the Manual Integration
and in the Common User Interface approach. Because
of that, we decided to ignore these two ways of integra-
tion in our discussions.

The original model covers integration on the user in-
terface level in a manual way, but we are missing a pro-



grammatic approach for it. In the context of modern web
applications, a client application is capable of interact-
ing with multiple applications and combining the data.
We assume that the authors placed this scenario in the
Integration by Applications approach. For our gap anal-
ysis, we want to differentiate between integration hap-
pening on the client or on server side. Thus, we add
the programmatic data integration on the user interface
layer under the name Integration by UIL. We locate it in
the group of Client-Application Level Integration.

Integration by Applications is a way of integrating
data on the server side like described in the last para-
graph. Ziegler and Dittrich [12] mention that this ap-
proach is applicable for integrating a small number of
applications. As integration applications grow in size,
the more interfaces they have to integrate. In our opin-
ion, there is a special case hidden in this approach where
one of the source applications is the integrating one at
the same time. This means that this application inte-
grates data of a foreign application with its own data. In
regards to communication mechanisms, we assume that
different forms of remote procedure calls (for example,
RPC, SOAP, or REST) are typical examples, because lo-
cation information about the receiver is required.

In Middleware Integration the opposite is the case.
Location information is typically not required by the
sender. The middleware deals with the delivery to the
right place. We see message-oriented middlewares as a
good example, where applications can subscribe to top-
ics or channels of messages they are interested in. Some
implementations even offer to add message or proto-
col transformation features for better interoperability.
The description of the original model introduces SQL-
middleware as an example that routes the queries to all
components that are involved to retrieve the expected re-
sult. The integration of the results of different compo-
nents, however, is not done by the SQL-middleware but
by the receiving application [12]. We find that middle-
ware integration operates on a similar level of abstrac-
tion as integration by application but can contain some
parts of the data integration logic. We summarize both
of them under the group of Server-Application Level
Integration.

Uniform Data Access takes the example of the
SQL-middleware to the next level by moving the inte-
gration logic to the database layer. This requires a global
virtual view over all data that is to be integrated in or-
der to resolve queries and deliver partial queries to the
right physical place. The location of physical data is
not changed and remains distributed. This point changes
when speaking about Common Data Storage. The data
is physically transferred in order to integrate. We find
that a suitable example is a DBMS that replicates data

over several nodes in order to achieve spatial proximity
for queries. An edge case of this approach is that appli-
cations share the same physical database and integrate
over it. We summarize both approaches under the group
of Database Level Integration.

The resulting model in Figure 2 resembles the typ-
ical structure of web-applications. There is an under-
lying database layer, a backend layer with all required
server applications and a frontend layer with the user in-
terfaces. When speaking about data integration in the
backend layer, we make a differentiation between two
basic communication mechanisms. One is to communi-
cate via an API, therefore the location of the other par-
ticipant in the interaction has to be known. The other is
to make use of a middleware that distributes messages
to the right place without having the sender to know the
location of the other participant and performing add fur-
ther logic on the messages. On the database layer, we
distinguish between the physical and the virtual integra-
tion approach.

5. Microservice Data Integration

In the previous section, we developed a model for
EII. In this section we examine how microservices inte-
grate data. The results will be used as a target for the
application of the EIIl model in Section 6.

Subsection 5.1 describes the sampled literature fol-
lowing the process of Section 3.1. The results of the
concept analysis defined in Section 3.2 are presented in
Subsection 5.2.

5.1. Literature Sampling Results

We applied the two-step literature sampling process
described in Subsection 3.1. Table 1 shows the final list
of literature we used for our further analysis.

We considered only Villaca et. al. [7] from search-
ing ACM digital library and IEEE Xplore. We ex-
cluded the paper in the end because it evaluates differ-
ent strategies regarding querying data from multiple mi-
croservices while our defined inclusion criteria focus on
discussions and opinions about integration approaches.
Nevertheless, we considered the concepts of their re-
search when refining our integration concepts. We ex-
cluded Diepenbrock et. al. [8] that we mentioned in
Section 2.3 because it does not discuss different integra-
tion approaches on an architectural level.

The first six entries represent the results of the first
step of the literature review; they all were found through
Google Scholar. The last two entries in the table were
added as a result of snowballing. Note that the blog
article [2] was considered, because it has an aggregate
citation count of over 400.



Table 1.
Ref | Author Title

Literature Pool

Ranking / Citations

[1] Newman

[6] Thones Microservices
[20] | Wolff

[21] | Richards

[22] | Butzin et. al.

[23] | Sill

[24] | Namiot et. al.

[2] Fowler and Lewis

5.2. Literature Analysis Results

We analyzed the selected literature pool following
the process of Subsection 3.2. Therefore, we identified
integration concepts that focus on the architectural point
of view. Villaca et. al. [7] gave us a good starting
point for identifying concepts regarding integration in
microservice-based architectures. We adapted and en-
hanced the concepts with the findings of grey literature.

Table 2 shows the identified concepts. Some liter-
ature made statements that apply to subcategories of a
category and did not further distinguish between them.
We illustrate this in Table 2 by joining corresponding
cells. Especially the two books [1, 20] discuss almost
the full bandwidth of solutions. The following summary
to each integration concept is not meant to be thorough,
detailed advantages and disadvantages can be read up in
the particular literature.

C1 Integration by Database: Discussing integration
on database level is not trivial. This approach not rec-
ommended in general because of the following disad-
vantages:

e Changes of the internal data model in one mi-
croservice can affect other microservices and thus
either crash them or discourages change [1, 20,
22].

* One database technology is enforced across mi-
croservices, so developers cannot independently
choose the best technology for their microservice
[20].

* The database may represent a single point of fail-
ure. This is especially dangerous if the chosen
database is not resilient [1].

* “The logic to perform the same sorts of manipu-
lation to a customer may now be spread among
multiple consumers” [1].

Changes to one microservice may affect those other
microservices that directly access the tables of the first

Building microservices: Designing fine-grained systems

Microservices: Flexible software architecture
Microservices vs. service-oriented architecture
Microservices approach for the internet of things

The design and architecture of microservices

On micro-service architecture

Microservices a definition of this new architectural term

#1 / 935 citations
#4 /212 citations

#9 / 80 citations

#11 /78 citations
#16 / 55 citations
#20 / 48 citations

-/ 217 citations

- / over 400 citations

microservice. Wolff [20] claims that a replication-
based approach to decouple microservices by involving
a schema transformation is viable. Most often those
transformations need custom implementations on other
architectural levels, though. The approach still has the
disadvantage of the restriction to one database technol-
ogy for the microservices that are meant to be integrated.
The other literature [1, 22] does not mention the possi-
bility of data replication and generalize their statements
without considering this approach.

In general, a well-defined interface should be used
for integration [21]. Could a versioned view be such a
well-defined interface, at least for reads? Indirect access
to database content with some decoupling steps between
seems not to be explored to its fullest yet from the point
of view that the chosen literature gave.

C2 Integration by Service Calls: Calling other mi-
croservices by using their APIs and integrating the re-
ceived data in a specific microservice is generally a vi-
able choice. Richards [21] claims that ”[...] microser-
vices architectures tend to rely on REST as their primary
remote-access protocol [...]”. REST is recommended for
use by Newman [1] and Wolff [20] explicitly, especially
in connection with HATEOAS and its links between re-
sources. Although REST has some drawbacks due to the
use of HTTP as basis, “REST over HTTP is a sensible
default choice for service-to-service interactions” [1].
The literature discusses remote procedure call (RPC)
technologies for the integration of microservices as well,
including SOAP. Those technologies are viable [1, 20],
although they have some downsides [1]. There are very
different RPC technologies, of which some are better
suited, some worse. “The use of a separate interface
definition can make it easier to generate client and server
stubs for different technology stacks” [1]. Technologies
that don’t restrict technology choice are favorable, e.g.
like Apache Thrift [20] and Googles gRPC [23].
Generally, integration by service calls seems to be a
supported choice according to examined literature. Sill
[23] advances his opinion that there are “design trends



Table 2. Integration Concepts for Microservices

C1 Integration by Database

a Direct Access
b Indirect Access

C2  Integration by Service Calls
a REST
b RPC

C3 Integration by Middleware
a ESB

b Simple Messaging/Pub-Sub
C4  Integration by UI

a Monolithic UI

b Distributed UI

for cloud services that favor speed and responsiveness
over human readability of the exchanged data and API
calls”. Various technological approaches will compete
with established REST over HTTP in the future.

C3 Integration by Middleware: Middleware is a
very broad category of ways to integrate applications.
In microservice literature, the two mentioned ones are
the enterprise service bus (ESB) from service-oriented
architecture (SOA) and simple message brokers support-
ing publish-subscribe functionality. In the upcoming
comparison, we assume that an ESB includes additional
logic like message enhancements, message transforma-
tions or protocol transformations.

The asynchronous messaging-style of integration
that enables choreography is frequently encouraged by
literature. This comes with the fact that “event-driven
applications [...] allow you to decouple compared to us-
ing point-to-point RPC the whole time” [6]. It also en-
ables data replication via events from one microservice
to another as an Event Data Pump [1]. Wolff [20] claims
that good implementations of a publish-subscribe infras-
tructure can improve the resilience and scalability of a
system. On the downside, these kinds of architectures
have the potential to become more complex [1].

In comparison, the ESB known from SOA contain-
ing much more logic is rejected by most literature. One
interviewee even claims he never saw any project suc-
ceed that incorporates a big central ESB [6]. The gen-
eral mantra that most literature agrees to is “keep your
middleware dumb, and keep the smarts in the endpoints”

[1].

Article Concepts
Cl C2 C3 C4

a |bja]|b a b b
[1] w | -|Dp w r|/p|p
[6] -l -l - - w | |- -
[20] w |p|r| T - r |p|r
(21] -l O Wm O] - -
[22] wo| - (r) - r |- | @
(23] - |- () -1 o-] -
[24] - - - \ - - r|-] -
(2] w) | - () wolTr |- -

r = recommendation, w = warned / rejected,
p = partially viable, () = claimed without explanation,
- = not discussed

C4 Integration by UI: We found two general ways
of integrating microservices on the Ul level. One is a
monolithic UI that makes API calls to backend services
and integrates the data for presentation. Newman [1]
calls this approach ”API composition”; it enforces that
API changes of microservices have to be combined with
adjustments in the UI. The modularization of a UI de-
couples the components as far as possible. They could
communicate with each other e.g. by utilizing events on
this level [20].

The other general approach claims that “microser-
vices should bring their own UI along with them. By
having the UI included with the relevant microservice,
changes to that microservice that affect the UI can be
done in one place. It is then necessary to integrate the
Uls of the microservices together to form the system as a
whole” [20]. This can be achieved in multiple ways. Ei-
ther linking HTML pages served by microservices, us-
ing skeletons that pull in other fragments via JavaScript
for example or utilizing Edge Side Includes (ESI) or
Server Side Includes (SSI) [20].

Some of the mentioned approaches provide closer inte-
gration, some come with more decoupling capabilities.
It is a trade-off. Which one to choose depends on the
use-case specific requirements. Regarding multiple Uls,
there is the Backends for Frontends approach [1, 20].
Each UI has its own server-side aggregation endpoint or
API gateway. It can lead to less chatty conversations
and promises to fulfill the different requirements of Uls
better [1].



6. Gap Analysis

This section uses the developed EII model of
Section 4 and applies it to the microservice domain that
Section 5 summarized. This last step is meant to make
the differences between both approaches visible and
perform a gap analysis.

Like already mentioned, we distinguish between
triggering distributed behavior and querying data from
microservices when speaking about integration. This
implies that we have to focus on the case of distributed
data aggregation from different microservices and ig-
nore the distributed behavior case in order to make a
comparison with data integration.

The structure of encountered integration concepts
has similarities with approaches of established EIl. We
steer the discussion through every established EII ap-
proach and conclude whether the corresponding ap-
proach is recommended, rejected, or restrictedly viable
in microservice-based architectures

Integration by Ul turned out to be a recommended
approach in microservice-based architectures under con-
cept C4. There are more fine-grained technical solutions
to this with each having its pros and cons. The method
of implementing Backends for Frontends fits better into
the next category, though.

Integration by Applications with different tech-
nologies is well represented and recommended in mi-
croservices. REST seems to be the most used tech-
nology, other RPC-like approaches are also viable. We
found those under the concept C2 Integration by Service
Calls.

Integration by Middleware is applicable with mi-
croservices within a certain degree as concept C3 shows.
The recommendation is to keep the middleware free
of domain logic. Publish-Subscribe messaging is fre-
quently encouraged in literature for decoupling services.
Other kinds of middleware are not described in investi-
gated literature, like SQL middleware. We conclude this
approach is present in microservice-based systems in a
restricted way.

Unified Data Access and Common Data Storage
are not distinguished in microservice literature but dis-
cussed under concept C1 Integration by Database. The
general opinion is to avoid this kind of integration.
Without spectating distributed behavior cases, the argu-
ment of spread manipulation logic across microservices
can be neglected in this context. Moving write function-
ality to the database level like stored procedures could
cope with this problem as well.

Two disadvantages of the database integration ap-
proach are connected to the technological choice of the

database. We are certain that there are use-cases where
restricting to one kind of database technology can be
considered as good trade-off when gaining performance
in return. Additionally, with the choice of a suitable
database technology, we can invalidate the argument of
lost resilience as a single point of failure.

The open point that remains is the danger to inde-
pendent evolvability of microservice, especially the in-
dependent deployability. There are database techniques
like schema evolution that could deal with this issue as
well. We think as long as a view on the data exists that is
maintained across versions of the microservice, as some
kind of versioned interface like it is good practice in
RESTful APIs as well, this approach has the potential to
be a good alternative to the recommended approaches.
Even though, literature rejects the approach to integrate
on database level.

7. Limitations

In Section 4 we selected and vetted an EII model
and developed it further in order to apply it for the com-
parison with approaches of microservices. However, in
order to claim that the chosen model completely repre-
sents established data integration theory in the enterprise
ecosystem, a comprehensive literature review is neces-
sary that makes sure the developed model covers all the
important aspects.

Our approach regarding data integration in
microservice-based architectures is limited to a se-
lective elicitation of discussions about the integration of
microservices. In Section 5 we focus on grey literature
by applying quality assurance criteria of citation count
in order to identify literature that has the most impact.
This assumption may lead to disregarding recent
insights that have not yet achieved high citation counts.

8. Conclusion and Future Work

This article developed a model for EII focusing on
system architecture in Section 4, reviewed microservice
literature regarding integration in Section 5, and applied
the developed model on those findings in Section 6.

With this approach, we showed that not the whole so-
lution space that is open for data integration in the enter-
prise ecosystem is utilized by microservices. Microser-
vices can utilize the UI for integrating data and present-
ing the result directly to the user. Another recommended
approach is to use service calls in order to retrieve data
and perform data integration in another microservice.
Regarding data integration via middleware, only tech-
nologies that provide simple publish-subscribe function-
ality are recommended. Literature explicitly warns to



move integration logic like data or protocol transforma-
tions into a middleware. Integration on database level is
rejected as well.

The recommendations and rejections we found in lit-
erature are backed up with experience and not by re-
search. We think that there are scenarios where inte-
grating microservices on the database level has advan-
tages over the other approaches. The well-known fact,
that data typically lives longer than applications is one
of the indicators that this approach is worth investigat-
ing further. In our future work, we will propose patterns
that deal with the negative implications of the integra-
tion approach on database level that literature explains
and compare it to established approaches that microser-
vices prefer.
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